A New Approach to the Pareto Stable Matching Problem
نویسنده
چکیده
In two-sided matching markets, the concept of stability proposed by Gale and Shapley (1962) is one of the most important solution concepts. In this paper, we consider a problem related to the stability of a matching in a two-sided matching market with indifferences (i.e., ties). The introduction of ties into preference lists dramatically changes the properties of stable matchings. For example, stable matchings need not have the same size. Furthermore, it is known that stability do not guarantee Pareto efficiency that is also one of the most important solution concepts in two-sided matching markets. This fact naturally leads to the concept of Pareto stability, i.e., both stable and Pareto efficient. Erdil and Ergin (2006, 2008) proved that there always exists a Pareto stable matching in a one-to-one/many-to-one matching market with indifferences and gave a polynomial-time algorithm for finding it. Furthermore, Chen (2012) proved that there always exists a Pareto stable matching in a many-to-many matching market with indifferences and gave a polynomial-time algorithm for finding it. In this paper, we propose a new approach to the problem of finding a Pareto stable matching in a many-to-many matching market with indifferences. Our algorithm is an alternative proof of the existence of a Pareto stable matching in a many-to-many matching market with indifferences.
منابع مشابه
A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems
Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...
متن کاملPareto Stable Matchings under One-Sided Matroid Constraints
The Pareto stability is one of solution concepts in two-sided matching markets with ties. It is known that there always exists a Pareto stable matching in the many-to-many setting. In this paper, we consider the following generalization of the Pareto stable matching problem in the many-to-many setting. Each agent v of one side has a matroid defined on the set of edges incident to v, and the set...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملPareto optimality in the Roommates problem
We consider Pareto optimal matchings as a means of coping with instances of the Stable Roommates problem (SR) that do not admit a stable matching. Given an instance I of SR, we show that the problem of finding a maximum Pareto optimal matching is solvable in O( √ nα(m,n)m log n) time, where n is the number of agents and m is the total length of the preference lists in I. By contrast we prove th...
متن کاملGoal Programming Approach to the Bi-Objective Competitive Flow-Capturing Location-Allocation Problem
Majority of models in location literature are based on assumptions such as point demand, absence of competitors, as well as monopoly in location, products, and services. However in real-world applications, these assumptions are not well-matched with reality. In this study, a new mixed integer nonlinear programming model based on weighted goal programming approach is proposed to maximize the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 39 شماره
صفحات -
تاریخ انتشار 2014